Informacija

4.3: Zadatak laboratorija 4: Monitoring stanovništva i uzorkovanje na terenu - Biologija

4.3: Zadatak laboratorija 4: Monitoring stanovništva i uzorkovanje na terenu - Biologija



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Ime: ________________________________

Uzorkovanje za nametnike daje korisne procjene veličine populacije samo kad se riješe dva važna aspekta: točnost i preciznost. Točnost je koliko je vaše uzorkovanje u mogućnosti odražavati stvarnu veličinu populacije. Preciznost je kada su podaci prikupljeni u svakom uzorkovanju relativno jednaki, s malim ili nikakvim varijacijama. Kad je preciznost loša, potrebno je više uzoraka za stvaranje točnijih podataka.

Određivanje veličine uzorka: krivulje precjenjivanja

Svakim događajem uzorkovanja dobivamo više informacija o našem ekosustavu. U donjem primjeru ispunit ćete tablicu 1 vrijednostima danim u Dodatku A, koji je skup podataka izgrađen na broju insekata zabilježenih tijekom izviđanja.

Uzorak br.# Vrste u uzorkuUkupno NOVE VrsteUKUPNE VRSTE (Kumulativno)
1
2
3
4
5

Stol 1.

Koristeći svoje podatke, ekstrapolirajte rezultate kako bi odražavali hipotetički organski vrt koji se, ako se promatra kao cjelina, sastoji od 150 parcela iste veličine.

Na primjer:

  • Ako je uzorkovano ukupno 40 jedinki, a 10 je vrsta štetnika A, tada je vrsta A 25% populacije (10/40 = 0,25). Ovaj postotak je relativno obilje.
  • 25% od 150 (150 × 25) iznosi 37,5, pa pretpostavljamo da bi na cijelom proizvodnom području trebalo biti oko 38 jedinki vrste A (zaokružujući na cijelog kukca).
Vrsta br.Naziv vrsteUkupno br. Uzorak (kumulativno)Relativno obilje (%)Ekstrapolirano obilje (x30)

Tablica 2.

Sada dodajte podatke iz sljedećih 5 uzoraka (uzorci 6-10), dodajući vašim brojevima, u donju tablicu.

Uzorak br.# Vrste u uzorkuTotalno nove vrste (uključujući prethodne uzorke)Ukupno Kumulativno Vrsta
6
7
8
9
10

Tablica 3.

S novim podacima morat ćete ponovno izračunati relativnu i ukupnu brojnost za svaku identificiranu vrstu tijekom 10 događaja uzorkovanja.

Vrsta br.Naziv vrsteUkupno br. Uzorak (kumulativno)Relativno obilje (%)Ekstrapolirano obilje (x15)

Tablica 4.

Je li bilo razlike u broju vrsta između tablice 1 i tablice 3? Je li promjenjivi broj vrsta pokazatelj promjene točnosti ili preciznosti?

Je li bilo razlike u ukupnoj relativnoj zastupljenosti za svaku vrstu? Zasto zasto ne?

Iscrtajte svoje podatke na donjem grafikonu prikazuje ukupan broj vrsta pronađenih kao odgovor na broj uzetih uzoraka isticanjem stanica u tablici na svakoj točki podataka. Budući da pratimo kumulativne podatke, povežite podatkovne točke linijom označenih ćelija

Radnja koju ste upravo stvorili je ono što je poznato kao a krivulja razrjeđenja. To pomaže konzultantima i znanstvenicima koji prate populacije organizama da odaberu ispravan napor uzorkovanja (broj događaja uzorkovanja ili broj jedinica uzorka) koji će koštati najmanju količinu resursa, a da se prikupe točni podaci za procjenu veličine populacije. Ovo se događa kada se dobije malo NOVIH informacija dodatnim uzorkovanjem. Označite gdje se to događa na vašem grafikonu dodavanjem zvjezdice u ovom trenutku.

Prema grafikonu koji ste napravili, koji je idealan broj uzoraka koje treba uzeti kako bi se smanjili napori uzorkovanja, a prikupilo najviše informacija za točnu procjenu populacija?

Primjena.

U proizvodnim sustavima nemamo stvarne veličine populacije štetnika koje bismo mogli usporediti s našim uzorcima, čime se osigurava točnost. Umjesto toga, oslanjamo se na opetovane napore uzorkovanja i različite tehnike uzorkovanja kako bismo dobili informacije o prisutnim populacijama štetnika.

Zatim ćete upotrijebiti hipotetičku shemu uzorkovanja na kojoj ćete provesti tri različite vrste uzoraka. Obično se koristi svaka metoda uzorkovanja, ali svaka daje vrlo različite vrste informacija. Za svaku metodu uzorkovanja pretpostavite da ne znate ništa o podacima koje su pronašle dvije druge tehnike: dovršite svaku tehniku ​​jednu po jednu, zanemarujući prethodne rezultate uzorkovanja. Koristeći PDF plohu vježbe (zasebna datoteka), ispunite karticu uzorkovanja za svaku tehniku.

I. Uzorak kartice prisutnosti/odsutnosti

Uzorkujte svaku biljku u redu kako biste ispunili donju tablicu. Označite samo ako je štetnik prisutan postavljanjem "X" u stupac ako se vrsta pojavi.

Vrsta:Vrsta:Vrsta:Vrsta:
BILJKA br.(opisati)(opisati)(opisati)(opisati)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

S uzorkovanjem P/A, namjera je steći predodžbu o štetočinama prisutnim u sustavu pretraživanjem svakog bez povećavanja troškova izviđača po satu zahtijevanjem brojanja svake populacije. Kada mislite da je ovakvo uzorkovanje najkorisnije i najekonomičnije za uzgajivače?

II. Fiksna kartica slučajnog uzorka

Pogledajte svoju parcelu i mentalno prekrijte mrežu dimenzija 3 × 3 koja pokriva cijelu parcelu dostupnih biljaka (pogledajte dijagram s desne strane). Odredite koji kraj vježbe sadrži jedinice 1-3, a koji 7-9. Odredite koja je biljka najbliža središtu svake jedinice uzorka na vašoj parceli. Pažljivo pregledajte ovih devet biljaka i ispunite donju karticu uzorka, dodajući novi redak na svaku parcelu kada se pronađe više od jedne "vrste" štetnika.

Mrežna jedinica br.ŠtetniciOpisBrojUkupno kumulativno
PrimjerSvijetlozelenaSvijetlozelena +99
TamnozeleneVeliki, okrugli krug110
1
2
3
4
5
6
7
8
9

Kao što ste iskusili, ovoj vrsti uzorkovanja potrebno je više vremena po biljci, pa je stoga potrebno smanjiti broj uzoraka biljaka. Razmislite o prvom dijelu ove aktivnosti, točnosti i preciznosti te dajte jednu korist i jedan nedostatak korištenja ove vrste uzorkovanja u usporedbi s jednostavnijim događajem uzorkovanja prisutnosti/odsutnosti koji se koristio za prethodnu karticu uzorka.

III. Kartica za uzastopno uzorkovanje

Koristite istih devet biljaka navedenih u gore navedenom uzorku tipa II. Provjerite ima li svaka biljka svijetlozeleno "+"; ako je prisutna, ta se biljka dodaje u zbroj kao "1". Svaki pozitivan rezultat dodaje tekući rezultat u okomitom stupcu pod nazivom "vaš broj". Ova kolona je aditiv- ako su sve prve tri biljke pozitivne na štetnika, tada bi do 3. biljke trebalo biti "3" u stupcu zbroja. Ako su biljke 1 i 2 pozitivne, ali 3 negativne, tada će i dalje biti "2" u stupcu zbroja na trećoj biljci.

Primjer:

Biljka br.Prisutna štetočina?Nemojte liječitiTVOJ GOVORLiječiti
1Da1
2Da2
3Ne223
4Da233
5Ne234

Usporedite svoj broj sa stupcima preporuka "Tretiraj" i "Ne liječi" kako biste utvrdili je li potrebno upravljanje pesticidima.

Biljka br.Prisutna štetočina?Nemojte liječitiTVOJ GOVORLiječiti
1
2
323
423
524
634
735
836
946
1047

Koja je preporuka za vaših devet biljaka za suzbijanje štetočina?

Izvršite uzastopno uzorkovanje nekoliko puta koristeći različite uzorke uzorkovanja - jedan cijeli red, svaku drugu biljku, SVE biljke itd. Jeste li dosljedno dobivali istu preporuku za suzbijanje štetočina? Zasto zasto ne?

Koje su prednosti i nedostaci uzastopnog uzorkovanja? Kada bi (u godini proizvodnje/ciklusu) ovo bilo najkorisnije sredstvo za uzorkovanje štetočina?

Zaključna analiza

Identifikacija insekata važan je dio traženja štetočina, osobito kada se radi o utvrđivanju razlike između štetnika i korisnih insekata sličnog izgleda. Međutim, obuka u identifikaciji za izviđačke poslove uvelike se razlikuje, što znači da ne mora uvijek postojati dosljednost u prepoznavanju i identifikaciji štetočina.

Kako nedosljednosti u identifikaciji mijenjaju preciznost i točnost svake vrste uzorkovanja i analize koje smo razmotrili u ovoj vježbi?


1.4.8.B Vrste pisanja - Napišite informativne dijelove iz više odlomaka (npr. Pisma, opise, izvješća, upute, eseje, članke, intervjui). (Državni standard PA za čitanje, pisanje, govor i slušanje)

1.4.8.C Vrste pisanja - Napišite uvjerljive radove. (Državni standard PA za čitanje, pisanje, govor i slušanje)

1.5.8.Kvaliteta pisanja - Pišite s oštrim, izrazitim fokusom. (Državni standard PA za čitanje, pisanje, govor i slušanje)

1.5.8.B Kvaliteta pisanja - Pišite koristeći dobro razvijen sadržaj primjeren temi. (Državni standard PA za čitanje, pisanje, govor i slušanje)

2.2.8.A Izračun i procjena - Dovršite izračune primjenom redoslijeda operacija. (PA State Standard Mathematics)

2.2.8.B Izračun i procjena - Zbrajajte, oduzimajte, množite i dijelite različite vrste i oblike racionalnih brojeva uključujući cijele brojeve, decimalne razlomke, postotke te pravilne i nepravilne razlomke. (PA State Standard Mathematics)

4.3.7.C Zdravlje okoliša - Objasnite biološku raznolikost. (Državni standardni standard okoliša i ekologije)

4.8.7.D Ljudi i okoliš - Objasnite važnost očuvanja prirodnih resursa na lokalnoj, državnoj i nacionalnoj razini. (Državni standardni standard okoliša i ekologije)

4.9.7.A Zakoni i propisi o okolišu - Objasnite ulogu zakona i propisa o zaštiti okoliša. (Državni standardni standard okoliša i ekologije)


Sažetak

Bioraznolikost je ugrožena u cijelom svijetu. Tijekom posljednjeg desetljeća, područje populacijske genomike razvilo se među nemodelskim organizmima, a rezultati ovog istraživanja počeli su se primjenjivati ​​u očuvanju i upravljanju vrstama divljih životinja. Genomski alati mogu pružiti precizne procjene osnovnih značajki populacija divljih životinja, kao što su efektivna veličina populacije, inbreeding, demografska povijest i struktura populacije, koje su ključne za napore očuvanja. Štoviše, studije populacijske genomike mogu identificirati određene genetske lokuse i varijante odgovorne za inbreeding depresiju ili prilagodbu promjenjivom okolišu, dopuštajući napore na očuvanju kako bi se procijenila sposobnost populacije da se razvija i prilagođava kao odgovor na promjene u okolišu i da se nosi s prilagodljivim varijacijama. Iako su se veze od temeljnih istraživanja do primijenjenog očuvanja divljih životinja sporo razvijale, te veze sve više jačaju. Ovdje pregledavamo primarna područja u kojima se pristupi populacijske genomike mogu primijeniti na očuvanje i upravljanje divljim životinjama, ističu primjere njihove uporabe i daju preporuke za nadogradnju napretka postignutog u ovom području.


Metode uzorkovanja vjerojatnosti

Uzorkovanje vjerojatnosti znači da svaki član populacije ima šanse biti odabran. Uglavnom se koristi u kvantitativnim istraživanjima. Ako želite proizvesti rezultate koji su reprezentativni za cijelu populaciju, tehnike uzorkovanja vjerojatnosti su najvažniji izbor.

Postoje četiri glavne vrste vjerojatnog uzorka.

1. Jednostavno slučajno uzorkovanje

U jednostavnom slučajnom uzorku, svaki član populacije ima jednake šanse da bude izabran. Vaš okvir uzorkovanja trebao bi obuhvatiti cijelu populaciju.

Za provođenje ove vrste uzorkovanja možete koristiti alate poput generatora slučajnih brojeva ili druge tehnike koje se u potpunosti temelje na slučaju.

Primjer

Želite odabrati jednostavan slučajni uzorak od 100 zaposlenika tvrtke X. Svakom zaposleniku u bazi podataka tvrtke dodjeljujete broj od 1 do 1000 te pomoću generatora slučajnih brojeva odaberete 100 brojeva.

2. Sustavno uzorkovanje

Sustavno uzorkovanje slično je jednostavnom slučajnom uzorkovanju, ali ga je obično malo lakše provesti. Svaki član populacije naveden je s brojem, ali umjesto nasumično generiranih brojeva, pojedinci se biraju u pravilnim razmacima.

Primjer

Svi zaposlenici tvrtke navedeni su po abecedi. Od prvih 10 brojeva nasumično odabirete početnu točku: broj 6. Od broja 6 nadalje odabire se svaka deseta osoba na popisu (6, 16, 26, 36 i tako dalje), a na kraju dobivate uzorak od 100 ljudi.

Ako koristite ovu tehniku, važno je osigurati da na popisu nema skrivenih uzoraka koji bi mogli iskriviti uzorak. Na primjer, ako baza podataka o ljudskim resursima grupira zaposlenike prema timu, a članovi tima navedeni su prema stažu, postoji rizik da vaš interval može preskočiti osobe u mlađim ulogama, što rezultira uzorkom koji je iskrivljen prema višim zaposlenicima.

3. Stratificirano uzorkovanje

Stratificirano uzorkovanje uključuje podjelu stanovništva na podpopulacije koje se mogu razlikovati na bitne načine. Omogućuje vam donošenje preciznijih zaključaka osiguravajući da je svaka podskupina pravilno zastupljena u uzorku.

Da biste koristili ovu metodu uzorkovanja, podijelite populaciju u podskupine (zvane stratumi) na temelju relevantnih karakteristika (npr. Spol, dobni raspon, raspon prihoda, radna uloga).

Na temelju ukupnih udjela stanovništva izračunavate koliko ljudi treba uzorkovati iz svake podgrupe. Zatim pomoću slučajnog ili sustavnog uzorkovanja odabirete uzorak iz svake podskupine.

Primjer

Tvrtka ima 800 zaposlenih žena i 200 zaposlenih muškaraca. Želite osigurati da uzorak odražava rodnu ravnotežu tvrtke, pa stanovništvo razvrstavate u dva sloja na temelju spola. Zatim koristite nasumično uzorkovanje za svaku skupinu, odabirom 80 žena i 20 muškaraca, što vam daje reprezentativan uzorak od 100 ljudi.

4. Uzorkovanje klastera

Klastersko uzorkovanje također uključuje podjelu populacije u podskupine, ali svaka podgrupa treba imati slične karakteristike kao i cijeli uzorak. Umjesto uzorkovanja pojedinaca iz svake podskupine, nasumično odabirete cijele podgrupe.

Ako je to praktički moguće, mogli biste uključiti svakog pojedinca iz svakog uzorkovanog klastera. Ako su sami klasteri veliki, također možete uzorkovati pojedince iz svakog klastera koristeći jednu od gore navedenih tehnika.

Ova je metoda dobra za rješavanje velikih i raštrkanih populacija, ali postoji veći rizik od pogreške u uzorku jer bi mogle postojati značajne razlike među klasterima. Teško je jamčiti da su uzorkovani klasteri doista reprezentativni za cijelu populaciju.

Primjer

Tvrtka ima urede u 10 gradova diljem zemlje (svi s približno istim brojem zaposlenih na sličnim poslovima). Nemate kapacitet otputovati u svaki ured radi prikupljanja podataka, pa se nasumičnim uzorkovanjem odabirete 3 ureda - ovo su vaši klasteri.

Što lektura može učiniti za vaš rad?

Urednici Scribbra ne samo da ispravljaju gramatičke i pravopisne pogreške, već i jačaju vaše pisanje pazeći da vaš rad ne sadrži nejasan jezik, suvišne riječi i neugodne fraze.


Tečajevi s temom DP -a

Mrežni katalog uključuje najnovije izmjene predmeta i uvjete za stupanj koje je odobrio Senat fakulteta, uključujući promjene koje još nisu na snazi. Tečajevi koji prikazuju dva unosa istog broja ukazuju na to da se informacije o tečaju mijenjaju. Najprije je prikazana najnovija odobrena verzija, zatim slijedi starija verzija, sivom bojom, s posljednjim važećim terminom koji prethodi naslovu tečaja. Tečajevi prikazani sivom bojom sa samo jednim unosom broja tečaja se prekidaju. Ponudama tečajeva po terminima možete pristupiti klikom na poveznice termina prilikom pregledavanja određenog kataloga kampusa.

Škola okoliša (SOE)

100 Uvod u naš okoliš: geologija, ekologija i upravljanje okolišem 1 Cjelovito razumijevanje poznavanja geologije, ekologije, znanosti o okolišu i ljudskih političkih dimenzija u okolišu Zemlje, temeljno razumijevanje pitanja okoliša.

101 [PSCI] Dobrodošli na Zemlju: Uvod u geologiju 4 (3-3) Preduvjet za upis: Upis nije dopušten ako je kredit već stečen za DP 102. Uvodna fizikalna geologija za nenaučne smjerove naglasak na zapadnim SAD-ima. Kredit nije odobren za DP 101 i 102.

101 (Na snazi ​​do ljeta 2021.) [PSCI] Uvod u geologiju 4 (3-3) Preduvjet za upis: Upis nije dopušten ako je kredit već stečen za DP 102. Uvodna fizikalna geologija za nenaučne smjerove naglasak na zapadnim SAD-ima. Kredit nije odobren za DP 101 i 102.

102 Geologija za prirodoslovne smjerove 4 (3-3) Preduvjeti za upis predmeta: MATEMATSKA 103, 106, 140, 171, 201 ili 202, ili istovremeni upis na bilo koji od njih, ili minimalni ALEKS-ov bodovni uspjeh iz matematike od 40%. Upis nije dopušten ako je kredit već stečen za DP 101. Suvremeni koncepti proučavanja minerala o mineralima, proučavanju resursa i zemljovida. Potreban izlet. Kredit nije odobren za DP 101 i 102.

102 (na snazi ​​do ljeta 2021.) Fizikalna geologija 4 (3-3) Preduvjeti za upis tečaja: MATEMATSKA 103, 106, 140, 171, 201 ili 202, ili istovremeni upis na bilo koji od ovih uvjeta, ili minimalni ALEKS-ov rezultat iz matematike od 40% . Upis nije dopušten ako je kredit već stečen za DP 101. Suvremeni koncepti proučavanja minerala o mineralima, proučavanju resursa i zemljovida. Potreban izlet. Kredit nije odobren za DP 101 i 102.

103 [PSCI] Ostali svjetovi: Usporedna planetologija našeg Sunčevog sustava 3 Proučavanje geoloških procesa i okruženja na planetima i mjesecima našeg Sunčevog sustava.

105 [PSCI] Prirodni resursi i prirodne opasnosti 3 Pregled ključnih prirodnih resursa, fizičkih procesa pomoću kojih priroda i društvo proizvode te resurse te procesa srodnih prirodnih opasnosti. Preporučena priprema: MATEMIJA 103 ili više sa C ili boljim, ili minimalni ALEKS -ov rezultat iz matematike od 45%.

110 [BSCI] Okoliš, ljudski život i održivost 4 (3-3) Interakcije između ljudi i njihovog okoliša multidisciplinarni uvod u ekološke koncepte i brige.

204 Terenske metode za karijeru u prirodnim znanostima 4 (3-3) Uvod u osnovne pojmove, terenske tehnike i uporabu proračunskih tablica u prirodnim resursima. Potrebni izleti.

204 (na snazi ​​do ljeta 2021.) Uvod u mjerenja i analize u znanosti o prirodnim resursima 2 (1-3) Uvod u osnovne pojmove, tehnike na terenu i uporabu proračunskih tablica u prirodnim resursima. Potrebni izleti.

207 Geološki terenski kamp 3 (0-9) Preduvjet za predmet: DP 101 ili 102 SOE 210. Uvod u metode geološkog polja, osnovno geološko kartiranje.

210 [PSCI] Povijest i evolucija Zemlje 4 (3-3) Uvod u povijest i evoluciju Zemlje kroz promatranja, prikupljanje i analizu podataka, čitanja i vježbe pisanja.

210 (Na snazi ​​do ljeta 2021.) [PSCI] Povijest i evolucija Zemlje 4 (3-3) Uvod u povijest i evoluciju Zemlje kroz promatranja, prikupljanje i analizu podataka, čitanja i vježbe pisanja. Potrebna su dva izleta.

230 [PSCI] Uvodna oceanografija 3 Interdisciplinarno proučavanje oceanskih sustava: morska geologija, kemija, fizika i biologija Utjecaj oceana na klimu i odgovor na ljudske aktivnosti.

250 [PSCI] Uvod u znanost o zemaljskom sustavu 3 Preduvjet: SOE 110 ili BIOLOGIJA 106, svaki sa C ili boljim. Zemljini temeljni sustavi (geo, atmosfera, hidro i biosfera) u kontekstu globalnih promjena. Preporučeno: CHEM 101 ili 105.

275 Rijeke: oblik, funkcija i upravljanje 3 Uvod u rijeke, ekologiju potoka i obnovu.

275 (na snazi ​​do ljeta 2021.) Rijeke: oblik, funkcija i upravljanje 3 Uvod u rijeke, ekologiju potoka i obnovu.

280 [PSCI] Kako funkcionira zemaljski klimatski sustav 3 Razumijevanje funkcioniranja zemaljskog klimatskog sustava pruža znanstvene temelje za informirane procjene upravljanja i politike.

285 Znanost i politika o klimatskim promjenama 3 Preduvjet predmeta: DP 110. Znanost o klimatskom sustavu za smanjenje emisije stakleničkih plinova i najbolja politika za to.

300 Ekologija prirodnih resursa 3 Ekologija primijenjena na upravljanje biološkom raznolikošću ekosustava prirodnih resursa, biologiju očuvanja, globalne klimatske promjene u ekologiji prirodnih resursa. Potrebni izleti.

301 Šumsko bilje i ekosustavi 3 (2-3) Preduvjeti za upis predmeta: SOE 300 ili BIOLOGIJA 372 ili istovremeni upis na bilo koji od njih. Identifikacija i ekologija šumskih biljaka s naglaskom na drveću i ekosustavima u kojima se pojavljuju. Potrebni izleti.

302 Sušne kopnene biljke i ekosustavi 3 (2-3) Preduvjeti za upis tečaja: SOE 300 ili BIOLOGIJA 372 DP 301. Identifikacija i ekologija sušnih kopnenih biljaka (drveće, grmlje, trave, zeljanice) i ekosustavi u kojima se pojavljuju. Potrebni izleti.

303 Geologija okoliša 3 Preduvjet predmeta: DP 101 ili 102. Geološke opasnosti i geološki problemi povezani s ljudskim aktivnostima. Obavezan izlet.

304 Mjerenja na terenu ekosustava 4 (3-3) Preduvjeti za upis predmeta: DP 204 SOE 300 ili BIOLOGIJA 372 ili istovremeni upis u SOE 301 ili istovremeni upis. Mjerenje i analiza šuma, staništa divljih životinja i pašnjaka pomoću terenske opreme i tehnika prostornog uzorkovanja razvoj vještina zapošljavanja u šumarstvu, obnovi šuma i gospodarenju divljim životinjama.

304 (na snazi ​​do ljeta 2021.) Mjerenja na terenu ekosustava 4 (3-3) Preduvjeti za tečaj: DP 204 SOE 300 ili BIOLOGIJA 372 ili istovremeni upis u DP 301 ili istovremeni upis. Uzorkovanje fiksnih područja i analitičke tehnike za procjenu različitih ekoloških varijabli i metoda uzorkovanja radijusa promjenjivog radijusa staništa divljih životinja za postupke procjene biomase za ekosustave.

305 Šumsko uzgoj 3 Preduvjeti za predmet: DP 204 SOE 300 ili BIOLOGIJA 372 DP 301. Dinamika sastojina, metode prirodne regeneracije, tretman srednjeg nasada, odnosi upravljanja prirodnim resursima prema šumsko -uzgojnoj praksi. Potrebni izleti.

306 Biljke u okolišu 3 Preduvjet predmeta: DP 300. Način na koji biljke međusobno djeluju sa svojim fizičkim i biotičkim okruženjem fiziološka funkcija aklimatizacije, prilagodbe i tolerancije biljaka s naglaskom na šume i drveće.

306 (na snazi ​​do ljeta 2021.) Biljke u okolišu 3 Kako biljke stupaju u interakciju s njihovim fizičkim i biotičkim okolišem, fiziološka funkcija aklimatizacije, prilagodbe i tolerancije biljaka s naglaskom na šume i drveće.

310 Metode u ekologiji divljih životinja 4 (3-3) Uvjet predmeta: BIOLOGIJA 106 s C ili boljim. Tehnike uzorkovanja na terenu i u laboratoriju u istraživanju i upravljanju divljim životinjama.

311 Modeliranje okoliša 4 (3-3) Konstrukcija i ispitivanje računalnih simulacijskih modela sustava okoliša. Zadruga: Otvoreno za studente koji traže stupanj sučelja.

312 [DIVR] Prirodni resursi, društvo i okoliš 3 Društveni pogledi na procese prirodnih resursa kojima se ti stavovi razvijaju i izražavaju društveni sukob oko prirodnih bogatstava.

314 Uslužno učenje u Ekvadoru: izgradnja održivih lokalnih rješenja za zdravlje ljudi i okoliša 3 Iskustvo radeći zajedno s lokalnim zajednicama u Ekvadoru na projektima koji će poboljšati ruralni pristup održivoj energiji, čistoj vodi, poboljšanom zdravlju ekosustava i održivim sredstvima za život. Potreban izlet na proljetni raspust.

315 Voda i Zemlja 3 (2-3) Preduvjet za predmet: CHEM 102 ili 106 jedan iz MATH 108, 140, 171, 172, 182, 201, 202 ili ENGR 107 jedan od DP 101, SOE 102, 4 kredita FIZIKA 101 ili 201, ili FIZIKA 101 i 111, ili FIZIKA 201 i 211. Globalni hidrološki ciklus, uključujući rijeke i vremenske uvjete, podzemne vode, kišnicu i atmosferu, oceane, ljudske utjecaje. Potrebna terenska istraživanja.

315 (na snazi ​​do ljeta 2021.) Voda i Zemlja 3 (2-3) Preduvjeti za tečaj: CHEM 102 ili 106 jedan iz MATH 108, 140, 171, 172, 182, 201, 202 ili ENGR 107 jedan od DP 101, SOE 102, PHYSICS 101 ili PHYSICS 201. Globalni hidrološki ciklus, uključujući rijeke i vremenske uvjete, podzemne vode, kišnicu i atmosferu, oceane, ljudske utjecaje. Potrebna terenska istraživanja.

318 Genetika divljih životinja 3 Preduvjet za predmet: BIOLOGIJA 106 BIOLOGIJA 107 s C ili boljim bodom iz Matematike 106, 108, 140, 171 ili minimalnim ALEKS -ovim rezultatom 80%. Primjena genetskih alata za očuvanje i upravljanje divljim životinjama, uključujući forenziku, otkrivanje rijetkih vrsta i procjenu populacije. Zadruga: Otvoreno za studente koji traže stupanj sučelja.

320 Sedimentna petrologija i taloženje 3 (2-3) Preduvjeti za upis predmeta: DP 350. Sastav i podrijetlo sedimentnih stijena primjenjujući temeljna načela sedimentologije. Potreban izlet.

322 Geologija sjeverozapadnog Pacifika 3 Preduvjet: SOE 101 ili 102. Fizička geologija sjeverozapadnog Pacifika usredotočena na geološke procese važne u njegovoj evoluciji. Potrebni izleti.

335 [M] Politika i pravo zaštite okoliša 3 Preduvjet za predmet: DP 110. Globalna, nacionalna i regionalna pitanja i politika zaštite okoliša.

340 [M] Strukturna geologija i tektonika ploča 4 (3-3) Preduvjeti za upis tečaja: Jedan od MATH 106, 108, 140, 171 ili minimalni ALEKS rezultat iz matematike 80% SOE 210. Osnovno razumijevanje i tehnike rada u deformiranim stijene u planinskim pojasevima. Potreban izlet.

340 (na snazi ​​do ljeta 2021.) [M] Strukturna geologija i tektonika ploča 4 (3-3) Preduvjeti za upis predmeta: Jedan od MATH 106, 108, 140, 171 ili minimalni ALEKS-ov rezultat iz matematike od 80% SOE 210. Osnovno razumijevanje te tehnike rada u deformiranim stijenama u planinskim pojasevima. Potreban izlet.

350 Zemljani materijali 4 (2-6) Preduvjeti za tečaj: CHEM 101 ili 105 SOE 101, 102, 210 ili 230. Sastav, fizikalna svojstva, struktura, kristalografija, identifikacija i podrijetlo minerala. Potreban izlet.

356 Magmatski procesi 3 (2-3) Preduvjeti za upis predmeta: SOE 350. Proučavanje vulkanske aktivnosti, generiranje i evolucija magme te formiranje i rast Zemljine kore. Potrebni izleti.

356 (na snazi ​​do ljeta 2021.) Magmatski procesi 3 (2-3) Preduvjeti za upis tečaja: SOE 350. Proučavanje vulkanske aktivnosti, stvaranje i evolucija magme te formiranje i rast Zemljine kore. Potrebni izleti. (Ranije GEOLOGIJA 356).

357 Uvod u metamorfne stijene i minerale i kako oni utječu na naš svijet 3 (2-3) Temeljni procesi u području znanosti o Zemlji primjena teorijskih pojmova od metamorfizma do izazova i stvarnosti suvremenog svijeta, uključujući klimu, potrese i industriju.

357 (na snazi ​​do ljeta 2021.) Uvod u metamorfne stijene i minerale i kako oni utječu na naš svijet 3 (2-3) Temeljni procesi u području znanosti o Zemlji primjena teorijskih pojmova od metamorfizma do izazova i stvarnosti suvremenog svijeta, uključujući klimu , potresi i industrija.

390 Živjeti na rubu: globalne klimatske promjene i povijest Zemlje 3 Preduvjeti za upis tečaja: Mlađe stajanje. Globalni zemaljski sustav: ocean, zemlja, atmosfera, biosfera i kriosfera Utjecaj čovjeka na klimatski sustav Rasprava o predviđanju klimatskih promjena.

402 Ljudsko zdravlje i okoliš 3 Pristup rješavanju problema štetnih učinaka na zdravlje ljudi uzrokovanih kontaminacijom medija iz okoliša ili antropogenim promjenama u ekosustavima.

403 Uzorkovanje za upravljanje kopnenim ekosustavima 3 (2-3) Preduvjeti za tečaj: DP 204 STAT 212 ili 412. Jednostavno slučajno uzorkovanje, slojevito uzorkovanje i uzorkovanje proporcionalno važnosti koja je predstavljena za odabir sheme uzorkovanja, njezinu provedbu na terenu i procjenjivanje varijance.

404 [CAPS] [M] Preduvjet za tečaj 3 ekosustava: SOE 110 BIOLOGIJA 106 BIOLOGIJA 372 ili istovremeni upis mlađeg staža. Teorija organizacije i procesa ekosustava i primjene na suvremene ekološke probleme.

405 Geofizika u blizini površine 4 (3-3) Istraživanje geofizike u blizini površine, primjenjivo, ali bez ograničenja, analiza podzemnih voda, sanacija okoliša, arheologija i otkrivanje prirodnih resursa.

405 (na snazi ​​do ljeta 2021.) Geografska fizika u blizini površine 4 (3-3) Istraživanje geofizike u blizini površine, primjenjivo, ali ne ograničavajući se na, analizu podzemnih voda, sanaciju okoliša, arheologiju i otkrivanje prirodnih resursa.

406 Uvod u radiološku znanost 3 Preduvjeti za upis predmeta: Svaki po jedan predmet iz biologije, računa, kemije i fizike. Osnove atomske fizike, interakcije zračenja s materijom, dozimetrije i biologije zračenja, radioekologije i radiološke zaštite zdravlja.

408 [CAPS] [M] Geologija terena 3 (0-9) Preduvjet predmeta: DP 207 DP 340 SOE 350 viši položaj. Napredni terenski problemi i metode Tumačenje podataka i priprema izvješća. Zadruga: Otvoreno za studente koji traže stupanj sučelja.

411 [M] Limnologija i upravljanje vodenim ekosustavima 3 (2-3) Uvod u znanost i upravljanje vodenim ekosustavima, s naglaskom na jezerima.

412 [M] Globalna biogeokemija 3 Ciklusi biogeokemijski važnih elemenata i antropogene promjene tih ciklusa u kopnenom i vodenom okruženju na globalnoj razini. Potreban izlet. Kredit nije odobren ni za DP 412 ni za DP 512. Ponuđen na razini 400 i 500.

416 Procesi tla u kritičnoj zoni Zemlje 3 Geokemija i teorija procesa i primjene tla s naglaskom na reakcijama na krutom, tekućem i plinovitom sučelju između litosfere, atmosfere, hidrosfere i biosfere. (Ukršteni tečaj ponuđen kao SOE 416/516, SOIL SCI 416/516). Ne priznaju se krediti za SOE/SOIL SCI 416 i SOE/SOIL SCI 516. Preporučena priprema: Osnovno poznavanje tla (npr. SCI SCI 201 ili ekvivalent CHEM 106 PHYSICS 102). Ponuda na razini 400 i 500.

417 Znanost i upravljanje ribarstvom 3 Preduvjeti za upis predmeta: DP 411 ili BIOLOGIJA 412 STAT 212 ili MATEMATIKA 171. Pozadina razvoja ribarstva i ispitivanje prirodnih i društvenih znanstvenih teorija i tehnika koje se primjenjuju na upravljanje ribarstvom.

420 Dugotrajna istraživanja šumskih ekosustava: šume starog rasta Nacionalnog parka Yosemite 3 Preduvjet: Dopuštenjem instruktora. Tečaj terenskih metoda istraživanja šumskih ekosustava na lokalitetu u mješovitoj šumi crnogoričnih stabala u nacionalnom parku Yosemite. Tečaj obično traje krajem svibnja.

430 Uvod u požare u divljini 3 Preduvjeti za upis tečaja: SOE 300 ili BIOLOGIJA 372 DP 301. Fizička priroda i ponašanje požara u divljini vatrogasna okolina ekološka praksa upravljanja vatrom u divljini. Potreban izlet.

431 Ishrana divljih životinja 3 (2-3) Preduvjeti za upis tečaja: BIOLOGIJA 106 s C ili boljim BIOLOGIJA 107 s C ili boljim juniorskim stanjem. Prehrambeni zahtjevi i interakcije populacija divljih životinja. Zadruga: Otvoreno za studente koji traže stupanj sučelja.

435 Ekologija divljih životinja 4 (3-3) Preduvjeti za upis predmeta: BIOLOGIJA 372 ili SOE 300 STAT 212 ili 412 za mlađe studente. Ekologija divljih vrsta i biološki procesi koji doprinose. Potreban je noćni izlet.

438 Politika i pravo o prirodnim resursima i javnim zemljištima 3 Preduvjeti za upis tečaja: Mlađi stupanj. Razvoj, sadržaj i provedba prirodnih resursa te politika i zakon o okolišu u SAD -u Naglasak na povijesnom razvoju i aktualnim pitanjima u ovom području. Preporučena priprema: SOE 312.

441 Ekologija i očuvanje stanovništva 4 (3-3) Preduvjet predmeta: BIOLOGIJA 372 ili SOE 300 sa C ili boljim u bilo kojem DP 435 sa C ili boljim STAT 212 sa C ili boljim i istovremenim upisom u STAT 412 ili STAT 412 sa C ili boljim. Ekologija, očuvanje, upravljanje populacijama kralježnjaka, posebno ugroženim i ugroženim vrstama namijenjenim za divlje životinje i konzervacijsku biologiju.

441 (na snazi ​​do ljeta 2021.) Ekologija i očuvanje stanovništva 4 (3-3) Preduvjeti za tečaj: BIOLOGIJA 372 ili SOE 300 sa C ili boljim u bilo kojem DP 435 sa C ili boljim STAT 212 sa C ili boljim i istovremenim upisom u STAT 412 ili STAT 412 sa C ili boljim. Ekologija, očuvanje, upravljanje populacijama kralježnjaka, posebno ugroženim i ugroženim vrstama namijenjenim za divlje životinje i konzervacijsku biologiju.

444 Procjena okoliša 3 Nacionalni i državni okviri politike za procjenu okoliša koji podržavaju integraciju znanosti i javnosti u proces donošenja odluka agencija. Ne dodjeljuje se kredit za DP 444 i DP 544. Ponuđen na razini 400 i 500. Zadruga: Otvoreno za studente koji traže stupanj sučelja.

444 (Effective through Summer 2021) Environmental Assessment 3 National and state policy frameworks for environmental assessment that support integration of science and the public into agency decision-making process. Credit not granted for both SOE 444 and SOE 544. Offered at 400 and 500 level. Cooperative: Open to UI degree-seeking students.

445 Hazardous Waste Management 3 Environmental, technical, and political aspects of hazardous waste management evaluative methods, risk assessment, and current management requirements. Credit not granted for both SOE 445 and SOE 545. Offered at 400 and 500 level. Cooperative: Open to UI degree-seeking students.

446 [M] Wildlife Habitat Ecology 3 (2-3) Course Prerequisite: SOIL SCI 368 or concurrent enrollment STAT 212 or 412 senior standing. The ecology of how wildlife use, respond to, and affect resources in their environment.

446 (Effective through Summer 2021) [M] Wildlife Habitat Ecology 3 (2-3) Course Prerequisite: SOIL SCI 368 or concurrent enrollment. The ecology of how wildlife use, respond to, and affect resources in their environment.

450 [M] Conservation Biology 3 Course Prerequisite: Junior standing. Patterns of biological diversity, factors producing changes in diversity, values of diversity, management principles applied to small populations, protected areas, landscape linkages, biotic integrity, restoration, legal issues and funding sources.

454 [CAPS] [M] Restoration Ecology 3 (2-3) Course Prerequisite: Senior standing. Ecological principles used to restore biological communities ecological processes and species on degraded landscapes.

460 Biotechnology and the Environment 3 Course Prerequisite: BIOLOGY 106, 107, or 120 3 credit hours CHEM. Benefits, regulations, and human and environmental impacts of biotechnology used for crop protection, agricultural and energy production, and environmental remediation and management. (Crosslisted course offered as ENTOM 460, SOE 460).

461 Watershed Management 3 Principles and practices of management of forest and rangelands for protection, maintenance, and improvement of water resource values. Field trip required. Recommended preparation: SOE 204 or sufficient background in spreadsheets.

463 Water in the Environment 3 Course Prerequisite: MATH 140 or 171, or 4 credits PHYSICS 101 or 201, or PHYSICS 101 and 111, or PHYSICS 201 and 211, or PHYSICS 205. Water flows in the natural environment, including cloud formation, rainfall, evaporation, infiltration, groundwater, river flows, lakes, estuaries, mixing, and erosion.

463 (Effective through Summer 2021) Water in the Environment 3 Course Prerequisite: One semester of MATH 140, 171, PHYSICS 101, 201, or 205. Water flows in the natural environment, including cloud formation, rainfall, evaporation, infiltration, groundwater, river flows, lakes, estuaries, mixing, and erosion.

464 [M] Landscape Ecology 3 (2-3) Course Prerequisite: Junior standing. Linkages between spatial patterns and processes in a variety of landscapes and the qualitative tools used in the investigation of these linkages.

465 Aquatic Microbial Ecology 2 Course Prerequisite: BIOLOGY 372. Biological, ecological and environmental impact of microbes in aquatic systems.

470 Introduction to Economic Geology 3 (2-3) Course Prerequisite: SOE 340 SOE 350. Genesis, evolution and tectonic setting of ore deposits combining theory, description, and detailed hand specimen analysis. Field trip to major mining districts. Cooperative: Open to UI degree-seeking students.

471 [CAPS] International Wildlife Conservation 3 Course Prerequisite: Junior standing. A broad survey of international wildlife conservation that touches on biological, social, and political aspects of wildlife management focus on understanding the unique challenges that are encountered in the international arena.

474 [CAPS] [M] Physics and Chemistry of the Earth 4 (3-3) Course Prerequisite: CHEM 101 or 105 CHEM 102 or 106 4 credits of PHYSICS 101 or 201, or PHYSICS 101 and 111, or PHYSICS 201 and 211 SOE 101, 102, or 210 junior standing. Earth's operations as described by sub-disciplines of geology, chemistry, physics, and mathematics earth's composition as related to solar system formation.

474 (Effective through Summer 2021) [CAPS] [M] Physics and Chemistry of the Earth 4 (3-3) Course Prerequisite: CHEM 101 or 105 CHEM 102 or 106 MATH 171 PHYSICS 101 or 201 SOE 101, 102, or 210 junior standing. Earth's operations as described by sub-disciplines of geology, chemistry, physics, and mathematics earth's composition as related to solar system formation.

475 Groundwater 3 (2-3) Course Prerequisite: CE 317 or SOE 315 MATH 140 or concurrent enrollment, or MATH 172 or 182 or concurrent enrollment. Introduction to groundwater occurrence, movement, quality, and resource management, emphasizing physical and biogeochemical principles. Field trip required. (Crosslisted course offered as SOE 475, CE 475). Cooperative: Open to UI degree-seeking students.

476 Biology and Ecology of Pacific Salmon 3 Course Prerequisite: BIOLOGY 106 or 107 CHEM 101 or 105. The life histories, habitat requirements, and current issues facing Pacific salmon. Credit not granted for both SOE 476 and SOE 576. Offered at 400 and 500 level.

477 [CAPS] Environmental Dispute Resolution and Conflict Management 3 Course Prerequisite: Junior standing. Exploration of the consequences of complex social, economic, and environmental dynamics that lead to disputes and conflicts over environmental and natural resources develop toolbox of skills and approaches that may be used to facilitate collaborative solutions and resolution of disputes.

480 How to Build a Habitable Planet 3 An introduction to the origin and evolution of Earth including the effects of water, CO2, and humans on the planet exploration of radioactive decay, geochronology, radiogenic and stable isotope geochemistry, and chemical proxies in dynamic systems.

480 (Effective through Summer 2021) How to Build a Habitable Planet 3 An introduction to the origin and evolution of Earth including the effects of water, CO2, and humans on the planet exploration of radioactive decay, geochronology, radiogenic and stable isotope geochemistry, and chemical proxies in dynamic systems.

483 Sustainability: Applied Improvement or Promotion Projects 3 Course Prerequisite: Minimum 3 credits of [PSCI] or [BSCI] senior standing. An applied multidisciplinary introduction to sustainability classroom learning followed with an applied sustainability improvement or promotion project for Washington State University.

484 Forest Management and Planning 3 Knowledge, skills, and experience in drafting a management plan and managing forested properties for a variety of values, ranging from generation of diverse forest products to maintenance of important environmental values associated with forest lands.

485 Disturbance Ecology 3 (2-3) Course Prerequisite: SOE 204 SOE 301 SOE 302 or concurrent enrollment. Fire, disease, and other disturbances are primary drivers of structure and composition in terrestrial ecosystems study of management of insect outbreaks and fungal organisms in combination with fire and other disturbances.

486 Applied Remote Sensing: From Drones to Satellites 3 Course Prerequisite: SOIL SCI 368 or concurrent enrollment, or SOIL SCI 374 or concurrent enrollment. Remote sensing to measure changes in forests, plants, wildlife, wildfire, crops, and geologic features analyzing and applying data from satellites, drones, airplanes, and lidar to measures on the ground.

486 (Effective through Summer 2021) Applied Remote Sensing: From Drones to Satellites 3 Remote sensing to measure changes in forests, plants, wildlife, wildfire, crops, and geologic features analyzing and applying data from satellites, drones, airplanes, and lidar to measures on the ground.

491 Senior Seminar 1 Course Prerequisite: Senior standing. Recommended preparation: Admission to a major in science, mathematics, or engineering.

492 Special Topics V 1-3 May be repeated for credit cumulative maximum 12 hours. Specialized topics within the discipline content will vary each term. Open to all SOE majors. Cooperative: Open to UI degree-seeking students.

495 Undergraduate Internship V 1-12 May be repeated for credit cumulative maximum 12 hours. Course Prerequisite: By interview only. Practical experience in appropriate agencies for career students in earth science, environment and ecosystem science, forestry, and wildlife. S, F grading.

498 Seminar 1 May be repeated for credit cumulative maximum 3 hours. Research papers presented by students, faculty, and visiting scientists on geological research. Credit not granted for both SOE 498 and SOE 598. Offered at 400 and 500 level. S, F grading.

499 Special Problems V 1-4 May be repeated for credit. Independent study conducted under the jurisdiction of an approving faculty member may include independent research studies in technical or specialized problems selection and analysis of specified readings development of a creative project or field experiences. S, F grading.

501 Graduate Skills Seminar 1 Seminar designed to introduce first year graduate students to the science graduate program roles and responsibilities of graduate students, teaching assistants and researchers. S, F grading.

505 Geodynamics 4 (3-3) Overview of topics in geodynamics including conductive and convective heat transfer, mantle convection, plate flexure, faulting, and plate tectonics. Recommended preparation: Calculus and introductory physics.

510 Species Distribution Modeling 3 Theory and application of species distribution models, including niche, occupancy, and spatial capture-recapture models manipulation of spatial data and software packages (ArcGIS, R, MaxEnt, PRESENCE). Cooperative: Open to UI degree-seeking students.

512 [M] Global Biogeochemistry 3 Cycles of biogeochemically important elements and anthropogenic changes to those cycles in terrestrial and aquatic environments on a global scale. Field trip required. Credit not granted for both SOE 412 and SOE 512. Offered at 400 and 500 level.

516 Soil Processes in the Earth's Critical Zone 3 Soil geochemistry and processes theory and applications with a focus on reactions at the solid, liquid, and gaseous interface between the lithosphere, atmosphere, hydrosphere, and biosphere. (Crosslisted course offered as SOE 416/516, SOIL SCI 416/516). Credit not granted for both SOE/SOIL SCI 416 and SOE/SOIL SCI 516. Recommended preparation: Basic knowledge of soils (e.g. SOIL SCI 201 or equivalent CHEM 106 PHYSICS 102). Offered at 400 and 500 level.

520 Radiation Instrumentation 3 (2-3) Methods for analysis of radiation and radiative materials, including use of radiation monitoring equipment and analysis of instrument data.

521 Uses and Regulation of Radiation 3 Uses and regulation of radiation and radioactive materials in medicine, industry, power production, and scientific research.

524 Advanced Topics in Sedimentology 3 (2-3) May be repeated for credit cumulative maximum 6 hours. Modern aspects of sedimentary rocks. Field trip required. Cooperative: Open to UI degree-seeking students.

526 Ecology of the Columbia River 3 Interdisciplinary approach to the interconnections between the physical, geological, chemical, biological, and social dimensions of this large, iconic aquatic ecosystem. Recommended preparation: BIOLOGY 372.

531 Fundamentals of Environmental Toxicology 3 Fundamentals of toxicology environmental fate and biological effects of chemical pollutants in air, water, and food.

532 Applied Environmental Toxicology 3 Overview of and current issues in the field of environmental toxicology.

532 (Effective through Summer 2021) Applied Environmental Toxicology 3 Course Prerequisite: SOE 531 or PHARMSCI 505. Overview of the field of environmental toxicology interactions of zenobiotics with natural systems.

535 Integrated Water Resources Science and Management 3 Introduction to the physical, social, and cultural drivers that shape how water is managed within the larger environmental and human landscape.

536 Climate Change Impacts on Physical, Natural, and Human Systems 3 Methods for studying human-caused climate variability and change discussion of impacts on the physical environment and natural and human systems.

536 (Effective through Summer 2021) Climate Change Impacts on Physical, Natural, and Human Systems 3 Methods for studying human-caused climate variability and change discussion of impacts on the physical environment and natural and human systems.

540 Agroecology 3 Social and ecological aspects of agriculture and human food systems.

540 (Effective through Summer 2021) Agroecology 3 Social and ecological aspects of agriculture and human food systems.

541 Orogenic Systems 3 (2-3) Detailed analysis of the construction of mountain belts. Field trip required. Recommended preparation: B.S. in Geology or related field. Cooperative: Open to UI degree-seeking students.

542 Extensional Tectonics 3 Case study of Western US Basin and Range Province to explore processes and dynamics of extensional tectonics. Field trip required. Recommended preparation: B.S. in Geology or a related field. Cooperative: Open to UI degree-seeking students.

544 Environmental Assessment 3 National and state policy frameworks for environmental assessment that support integration of science and the public into agency decision-making process. Credit not granted for both SOE 444 and SOE 544. Offered at 400 and 500 level. Cooperative: Open to UI degree-seeking students.

544 (Effective through Summer 2021) Environmental Assessment 3 National and state policy frameworks for environmental assessment that support integration of science and the public into agency decision-making process. Credit not granted for both SOE 444 and SOE 544. Offered at 400 and 500 level. Cooperative: Open to UI degree-seeking students.

545 Hazardous Waste Management 3 Environmental, technical, and political aspects of hazardous waste management evaluative methods, risk assessment, and current management requirements. Credit not granted for both SOE 445 and SOE 545. Offered at 400 and 500 level. Cooperative: Open to UI degree-seeking students.

548 Applied Spatial Ecology 3 Foundational research principles in spatial ecology applied to new data production of methods and results sections suitable for publication, using R and GIS programming. Recommended preparation: Introductory-level experience with R and ArcGIS.

555 System Dynamics Models of Environmental Systems 3 Analysis of environmental system dynamics development and uses of simulation models using the Stella software on Macintosh. Cooperative: Open to UI degree-seeking students.

556 Foraging Ecology of Herbivores 2 Synthesis of foraging behavior concepts including nutritive quality of forages, digestive and metabolic constraints, and diet and habitat selection. Cooperative: Open to UI degree-seeking students.

560 Advanced Igneous Petrology 3 (2-3) Origin, evolution, and tectonic significance of igneous rocks. Field trip required. Cooperative: Open to UI degree-seeking students.

562 Watershed Biogeochemistry 3 Sources, transformations, fates and impacts of biogeochemically important compounds as they move downstream through watersheds to the coastal zone.

576 Biology and Ecology of Pacific Salmon 3 The life histories, habitat requirements, and current issues facing Pacific salmon. Credit not granted for both SOE 476 and SOE 576. Offered at 400 and 500 level.

577 Advanced Environmental Hydrology 2 Water (ground, soil, surface, plant, atmosphere) dynamics and support of ecosystem functions and organization in natural, disturbed, and human/impacted systems. Recommended preparation: college-level physics, multivariate calculus, and introduction to hydrology.

577 (Effective through Fall 2021) Advanced Environmental Hydrology 3 Principles, dynamics, interactions, and calculations of water flow in the environment (rivers, lakes, groundwater, soil and plant water, atmospheric boundary layer). Recommended preparation: college-level physics, multivariate calculus, and introduction to hydrology.

583 Radiogenic Isotopes and Geochronology 3 Radiogenic isotopes and their uses as chronometers (radiometric dating) and as tracers of earth evolution and differentiation. Cooperative: Open to UI degree-seeking students.

584 Stable Isotope Geochemistry 3 Principles and applications of isotope geochemistry in the geological sciences. Cooperative: Open to UI degree-seeking students.

592 Advanced Topics in Environmental and Natural Resource Sciences V 1-4 May be repeated for credit cumulative maximum 6 hours. Course Prerequisite: By instructor permission.

593 Graduate Seminar in Earth and Environmental Sciences 1 May be repeated for credit cumulative maximum 8 hours.

594 Environmental and Natural Resources Issues and Ethics 3 Ethical systems applied to natural resources issues of professionalism and ethics in natural resource management. Cooperative: Open to UI degree-seeking students.

597 Advanced Topics in Geology V 1-4 May be repeated for credit cumulative maximum 6 hours. Topics of current interest in geology.

598 Seminar 1 May be repeated for credit cumulative maximum 3 hours. Research papers presented by students, faculty, and visiting scientists on geological research. Credit not granted for both SOE 498 and SOE 598. Offered at 400 and 500 level. S, F grading.

600 Special Projects or Independent Study V 1-18 May be repeated for credit. Independent study, special projects, and/or internships. Students must have graduate degree-seeking status and should check with their major advisor before enrolling in 600 credit, which cannot be used toward the core graded credits required for a graduate degree. S, F grading.

700 Master's Research, Thesis, and/or Examination V 1-18 May be repeated for credit. Independent research and advanced study for students working on their master's research, thesis and/or final examination. Students must have graduate degree-seeking status and should check with their major advisor/committee chair before enrolling for 700 credit. S, U grading.

702 Master's Special Problems, Directed Study, and/or Examination V 1-18 May be repeated for credit. Independent research in special problems, directed study, and/or examination credit for students in a non-thesis master's degree program. Students must have graduate degree-seeking status and should check with their major advisor/committee chair before enrolling for 702 credit. S, U grading.

800 Doctoral Research, Dissertation, and/or Examination V 1-18 May be repeated for credit. Course Prerequisite: Admitted to a School of the Environment PhD program. Independent research and advanced study for students working on their doctoral research, dissertation and/or final examination. Students must have graduate degree-seeking status and should check with their major advisor/committee chair before enrolling for 800 credit. S, U grading.


Thesis Deadlines and Approval Process

Thesis deadlines are posted on The Graduate College website under "Current Students." The completed thesis must be submitted to the chair of the thesis committee on or before the deadlines listed on The Graduate College website.

The following must be submitted to The Graduate College by the thesis deadline listed on The Graduate College website:

  1. The Thesis Submission Approval Form bearing original (wet) and/or electronic signatures of the student and all committee members.
  2. One (1) PDF of the thesis in final form, approved by all committee members, uploaded in the online Vireo submission system.

After the dean of The Graduate College approves the thesis, Alkek Library will harvest the document from the Vireo submission system for publishing in the Digital Collections database (according to the student's embargo selection). NOTE: MFA Creative Writing theses will have a permanent embargo and will never be published to Digital Collections.

While original (wet) signatures are preferred, there may be situations as determined by the chair of the committee in which obtaining original signatures is inefficient or has the potential to delay the student's progress. In those situations, the following methods of signing are acceptable:

  • signing and faxing the form
  • signing, scanning, and emailing the form
  • notifying the department in an email from their university's or institution's email account that the committee chair can sign the form on their behalf
  • electronically signing the form using the university's licensed signature platform.

If this process results in more than one document with signatures, all documents need to be submitted to The Graduate College together.

No copies are required to be submitted to Alkek Library. However, the library will bind copies submitted that the student wants bound for personal use. Personal copies are not required to be printed on archival quality paper. The student will take the personal copies to Alkek Library and pay the binding fee for personal copies.

Master's level courses in Biology: BIO


Advantages of Simple Random Sampling

One of the best things about simple random sampling is the ease of assembling the sample. It is also considered as a fair way of selecting a sample from a given population since every member is given equal opportunities of being selected.

Another key feature of simple random sampling is its representativeness of the population. Theoretically, the only thing that can compromise its representativeness is luck. If the sample is not representative of the population, the random variation is called sampling error.

An unbiased random selection and a representative sample is important in drawing conclusions from the results of a study. Remember that one of the goals of research is to be able to make conclusions pertaining to the population from the results obtained from a sample. Due to the representativeness of a sample obtained by simple random sampling, it is reasonable to make generalizations from the results of the sample back to the population.


Types of Sampling Methods and Techniques in Research

The main goal of any marketing or statistical research is to provide quality results that are a reliable basis for decision-making. That is why the different types of sampling methods and techniques have a crucial role in research methodology and statistics.


Your sample is one of the key factors that determine if your findings are accurate. Making the research with the wrong sample designs, you will almost surely get various misleading results.

On this page you will learn:

  • What is sampling?
  • The various types of sampling methods: briefly explained.
    Probability and non-probability sampling.
  • Infographic in PDF.

What is sampling?

Dy definition, sampling is a statistical process whereby researchers choose the type of the sample. The crucial point here is to choose a good sample.

What is a population?

In sampling meaning, a population is a set of units that we are interested in studying. These units should have at least one common characteristic. The units could be people, cases (organizations, institutions), and pieces of data (for example – customer transactions).

What is a sample?

A sample is a part of the population that is subject to research and used to represent the entire population as a whole. What is crucial here is to study a sample that provides a true picture of the whole group. Often, it’s not possible to contact every member of the population. So, only a sample is studied when conducting statistical or marketing research.

Tamo su two basic types of sampling methods:

Probability Sampling

What is probability sampling?

In simple words, probability sampling (also known as random sampling or chance sampling) utilizes random sampling techniques and principles to create a sample. This type of sampling method gives all the members of a population equal chances of being selected.

For example, if we have a population of 100 people, each one of the persons has a chance of 1 out of 100 of being chosen for the sample.

Advantages of probability sampling :

  • A comparatively easier method of sampling
  • Lesser degree of judgment
  • High level of reliability of research findings
  • High accuracy of sampling error estimation
  • Can be done even by non-technical individuals
  • The absence of both systematic and sampling bias.

Nedostaci:

  • Monotonous work
  • Chances of selecting specific class of samples only
  • Higher complexity
  • Can be more expensive and time-consuming.

Types of Probability Sampling Methods

Simple Random Sampling

This is the purest and the clearest probability sampling design and strategy. It is also the most popular way of a selecting a sample because it creates samples that are very highly representative of the population.

Simple random is a fully random technique of selecting subjects. All you need to do as a researcher is ensure that all the individuals of the population are on the list and after that randomly select the needed number of subjects.

This process provides very reasonable judgment as you exclude the units coming consecutively. Simple random sampling avoids the issue of consecutive data to occur simultaneously.

Stratified Random Sampling

A stratified random sample is a population sample that involves the division of a population into smaller groups, called ‘strata’. Then the researcher randomly selects the final items proportionally from the different strata.

It means the stratified sampling method is very appropriate when the population is heterogeneous. Stratified sampling is a valuable type of sampling methods because it captures key population characteristics in the sample.

In addition, stratified sampling design leads to increased statistical efficiency. Each stratа (group) is highly homogeneous, but all the strata-s are heterogeneous (different) which reduces the internal dispersion. Thus, with the same size of the sample, greater accuracy can be obtained.

Systematic Sampling

This method is appropriate if we have a complete list of sampling subjects arranged in some systematic order such as geographical and alphabetical order.

The process of systematic sampling design generally includes first selecting a starting point in the population and then performing subsequent observations by using a constant interval between samples taken.

This interval, known as the sampling interval, is calculated by dividing the entire population size by the desired sample size.

For example, if you as a researcher want to create a systematic sample of 1000 workers at a corporation with a population of 10000, you would choose every 10th individual from the list of all workers.

Cluster Random Sampling

This is one of the popular types of sampling methods that randomly select members from a list which is too large.


A typical example is when a researcher wants to choose 1000 individuals from the entire population of the U.S. It is impossible to get a complete list of every individual. So, the researcher randomly selects areas (such as cities) and randomly selects from within those boundaries.

Cluster sampling design is used when natural groups occur in a population. The entire population is subdivided into clusters (groups) and random samples are then gathered from each group.

Cluster sampling is a very typical method for market research. It’s used when you can’t get information about the whole population, but you can get information about the clusters.

The cluster sampling requires heterogeneity in the clusters and homogeneity between them. Each cluster must be a small representation of the whole population.

Non-probability Sampling

The key difference between non-probability and probability sampling is that the first one does not include random selection. So, let’s see the definition.

What is non-probability sampling?

Non-probability sampling is a group of sampling techniques where the samples are collected in a way that does not give all the units in the population equal chances of being selected. Probability sampling does not involve random selection at all.

Na primjer, one member of a population could have a 10% chance of being picked. Another member could have a 50% chance of being picked.

Most commonly, the units in a non-probability sample are selected on the basis of their accessibility. They can be also selected by the purposive personal judgment of you as a researcher.

Advantages of non-probability sampling:

  • When a respondent refuses to participate, he may be replaced by another individual who wants to give information.
  • Less expensive
  • Very cost and time effective.
  • Easy to use types of sampling methods.

Disadvantages of non-probability sampling:

  • The researcher interviews individuals who are easily accessible and available. It means the possibility of gathering valuable data is reduced.
  • Impossible to estimate how well the researcher representing the population.
  • Excessive dependence on judgment.
  • The researchers can’t calculate margins of error.
  • Bias arises when selecting sample units.
  • The correctness of data is less certain.
  • It focuses on simplicity instead of effectiveness.

Types of Non-Probability Sampling Methods

There are many types of non-probability sampling techniques and designs, but here we will list some of the most popular.

Convenience Sampling

As the name suggests, this method involves collecting units that are the easiest to access: your local school, the mall, your nearest church and etc. It forms an accidental sample. It is generally known as an unsystematic and careless sampling method.

Respondents are those “who are very easily available for interview”. For example, people intercepted on the street, Facebook fans of a brand and etc.

This technique is known as one of the easiest, cheapest, and least time-consuming types of sampling methods.

Quota Sampling

Quota sampling methodology aims to create a sample where the groups (e.g. males vs. females workers) are proportional to the population.

The population is divided into groups (also called strata) and the samples are gathered from each group to meet a quota.

For example, if your population has 40% female and 60% males, your sample should consist those percentages.

Quota sampling is typically done to ensure the presence of a specific segment of the population.

Judgment Sampling

Judgmental sampling is a sampling methodology where the researcher selects the units of the sample based on their knowledge. This type of sampling methods is also famous as purposive sampling or authoritative sampling.

In this method, units are selected for the sample on the basis of a professional judgment that the units have the required characteristics to be representatives of the population.

According to https://explorable.com/ “The process involves nothing but purposely handpicking individuals from the population based on the authority’s or the researcher’s knowledge and judgment.”

Judgmental sampling design is used mainly when a restricted number of people possess the characteristics of interest. It is a common method of gathering information from a very specific group of individuals.

Snowball Sampling

Snowball sampling isn’t one of the common types of sampling methods but still valuable in certain cases.

It is a methodology where researcher recruits other individuals for the study. This method is used only when the population is very hard-to-reach.

For example, these include populations such as working prostitutes, current heroin users, people with drug addicts, and etc. The key downside of a snowball sample is that it is not very representative of the population.

Sampling can be a confusing activity for marketing managers carrying out research projects.


By knowing and understanding some basic information about the different types of sampling methods and designs, you can be aware of their advantages and disadvantages.

The two main sampling methods (probability sampling and non-probability sampling) has their specific place in the research industry.

In the real research world, the official marketing and statistical agencies prefer probability-based samples. While it would always be good to perform a probability-based sampling, sometimes other factors have to be considered such as cost, time, and availability.


Logistics

/>
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this license, authorized individuals may copy, distribute, display and perform the work and make derivative works and remixes based on this text only if they give the original author credit (attribution). You are also free to distribute derivative works only under a license identical (“not more restrictive”) to the license that governs this original work.

Dr. Rodney Dyer is an Associate Professor in the Department of Biology and the Assistant Director for the Center for Environmental Studies at Virginia Commonwealth University in Richmond, Virginia, USA. His research focuses on genetic connectivity and structure and how the environment influences both. More information on his research can be found at http://dyerlab.bio.vcu.edu.


PERSPECTIVES ON DIVERSITY, STRUCTURE, AND STABILITY

9.2.3 Some Current and Future Considerations: Food Webs Across Space and Time

Although space has played a large role in population ecology and direct interactions ( McCauley, Wilson, & deRoos 1996 ), the consideration of the role of space on food web dynamics is relatively recent ( Holt 1996 Polis, Anderson, & Holt 1997 Nachman 2001 Callaway & Hastings 2002 McCann et al., in press Teng & McCann 2004 ). In a series of articles, Holt (1996, 2002) and others ( Loreau, Mouquet, & Holt 2003 Holt & Hoopes, in press) have begun to tie metapopulation theory to community and ecosystem perspectives (dubbed metacommunity and metaecosystem, respectively). They have argued cogently that this larger perspective has the potential to unite population, community, and ecosystem perspectives. More specifically, they have argued that expanding the spatial scale of food webs may allow ecologists to more completely understand such long-standing issues as food chain length, trophic control (see also Polis, Anderson, & Holt 1997 ), island biogeography, and food web stability or instability.

Along a similar research theme, some ecologists have begun to consider empirical arguments to frame a more general spatial theory of food webs (McCann, Rasmussen, & Umbanhowar, in review). Polis and Strong (1996) emphasized that different habitats contained different primary producers and that these tended to be coupled by higher-ordered generalist consumers. This result is consistent with two empirical generalizations: (1) that generalist foraging tends to increase with higher-order consumers ( Polis & Strong 1996 Cohen, Jonsson & Carpenter 2003 ) and (2) that higher-order organisms tend to be larger and more mobile than their prey ( Peters 1983 Brown, Stevens, & Kaufman 1996 McCann et al, in press). These relationships are schematically summarized in Figure 9.3 and together create a simple framework for a general spatial theory. Some researchers (McCann et al., in press) have begun to consider the implication of such spatial coupling on the dynamics and stability of coupled food webs. The results suggest that in spatially extended systems with differentially responding resources or prey, behaviour (i.e., movement) by the larger, more mobile organism can act as a potent stabilizing force, especially when considered in a non-equilibrium context.

FIGURE 9.3 . A schematic representation of food webs in space. Higher-order organisms are increasingly more generalized in their foraging and increasingly more mobile. Thus, higher-order organisms couple lower-level habitat compartments.

The result is easily presented and consistent with earlier theory emerging from spatial population ecology (e.g., see McCauley, Wilson, & deRoos 1996 and Fryxell & Lundberg 1997 ). Effectively, larger organisms can respond to variation in space by moving from areas where prey or resource densities are low and towards areas where prey or resource densities are high. The outcome is the release of predatory pressure on prey when prey species are at low densities and increasing predatory pressure when prey species attain high densities—precisely the arrangement needed to reduce extreme variation in density. From the consumer perspective, its rapid behavioural response allows it to track variable resource or prey densities at a larger spatial scale. Clearly, the result relies on the underlying idea that resources in different habitats are responding differentially through time. It turns out that this variation can be abiotically driven or driven by the top-down predatory pressure of generalist consumers if the consumer tends to prefer one organism significantly more than other organisms (this is a manifestation of the weak interaction effect) ( McCann, Hastings, & Huxel 1998 ). So again, like the averaging effect described for a single trophic level ( Tilman, Lehman, & Bristow 1998 ), the notion of differential responses within a non-equilibrium perspective suggest that food web stability may unfold from variability in space and time.

Pimm and Lawton (1980) found little evidence for compartments in food webs except at huge spatial scales or if they considered the coupling of detrital webs to grazing webs. Recent analysis of food webs, using interaction strength or energy flow, found that compartments might be more ubiquitous than early investigations suggested ( Krause et al. 2003 ). It is interesting to reconsider how the coupling of food webs within a spatial perspective will influence the food web compartments. In Figure 9.4A , a food web in which weak and strong interactions are essentially uniformly distributed throughout the food web is depicted. Such a configuration does not drive compartmented food web structure, and in light of the result from Krause and her colleagues’ (2003) , may not characterize natural systems. Figure 9.4B , on the other hand, shows a distribution of interaction strengths that generates strong compartmentalization. Another interesting potential distribution of interaction strengths that generates compartments of a slightly different kind is illustrated in Figure 9.4C . Here, one will find not only a compartmentalized web but also some compartments that may tend to contain stronger interactions than other compartments (i.e., there is the potential not only for weak interactions but also for weak compartments).

FIGURE 9.4 . Three examples of the distribution of weak interactions in a food web. (A) Uniformly distributed weak interactions will not tend to produce compartments even if weak interactions are ignored. (B) Weak interactions are distributed such that food webs have compartments, although weak and strong interactions still exist within individual compartments. (C) Weak interactions are distributed such that food webs have compartments, although weak and strong interactions are positioned such that there also exists the tendency for weak and strong compartment flows.

Soil ecologists have argued for such structure for some time in their underground food webs ( Moore & Hunt 1988 ). They have suggested that bacterial energy channels tend to break down more labile detritus and turn over much more rapidly than fungal energy channels that tend to arise out of more recalcitrant detrital sources. Similarly, an argument can be made for littoral or benthic pathways in lakes versus pelagic pathways in lakes. Benthic invertebrates tend to turn over on a much longer timescale then the rapid turnover of zooplankton on phytoplankton. Finally, it has been suggested for some time that detrital webs are slower and more donor-controlled than grazing webs. Teng and McCann (2004) recently reconsidered the stabilizing role of compartments and found that compartments can be potent stabilizing forces. Again, particularly if compartments (like species) tend to respond differentially in time, behavioural responses by higher-order consumers can then average across these variable out-of-phase subsystems. Hence, strong and weak compartments could be an important form of food web structure that contributes to the persistence of ecological systems.


Gledaj video: geography assignment 4 (Kolovoz 2022).